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Abstract 

The paper presents a constrained least squares estimator for “distorted” 

data and analyses its asymptotic properties. The proposed estimator is 

unbiased (although inefficient) and asymptotically normal, provided that 

the true data were distorted by replacing them by a code that meets the 
Grenander conditions. Nevertheless, the properties of the estimator in 

the context of small samples remain unknown. 
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Resumen 

El artículo presenta un estimador de mínimo cuadrático restringido para 

datos “falseados” y analiza sus propiedades asintóticas. El estimador 

propuesto es insesgado (aunque ineficiente) y asintóticamente normal, 

siempre que los datos verdaderos hayan sido falseados reemplazándolos 
por un código que satisfaga las condiciones de Grenander. Sin embargo, 

las propiedades del estimador en el contexto de muestras pequeñas 

permanecen aún desconocidas. 
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1. INTRODUCTION 

Consider the “true” model  

y = X00 + 0, 0~(0, σ0
2Ω0), 

where y is a n  1 vector of observations, X0 is a matrix of constants of 

size n  k and full column rank, 0 is a vector of k  1 unknown fixed 

parameters, 0 is an unobservable vector of n  1 independent but not 

identically distributed random variables, and σ0
2Ω0 is a known 

symmetric positive definite matrix. The parameter vector 0 is subject to 

the system of linear constraints R0 = r where R and r are, respectively, 

a full row rank matrix of dimension q  k and a vector of dimension q  

1. If X0 is a sample matrix, then it satisfies the Grenander conditions 

(Greene, 2006, p. 65). 

Now suppose that for some reason not all elements of X0 have been 

properly recorded. Instead, a matrix X = X0 + U is provided, with each 

element uij = (1  x=x0)(cij  x0ij), where x=x0 is a Kronecker delta that 

equals 1 if xij = x0ij or 0 otherwise. The constant cij is a substitute code 

for the true x0ij. That is, cij is simply a code indicating that the true value 

is unknown, either because it was not recorded or because its record is 

faulty or “distorted”. This means that both X0 and U are not fully 

observable, unlike X which is a matrix of known constants. For reasons 
that will become apparent below, we assume that X is a full column rank 

matrix and that the distortion of data occurs completely at random. We 

estimate 0 under this specification. 

 

2. UNCONSTRAINED SOLUTIONS 

2.1 Deductions 

Let  

y = X + , where ~(μ, σε
2Ω) 

be the distorted model. As in the true model σε
2Ω is a known matrix as 

well as cov(,0) = σ0
2σ2Ψ. If we minimize (Bera, 1994) the sum of squares 

L = (yX)'Ω1(yX00) with respect to  and 0, we get the system of 

normal equations 

L/b0 = X0'Ω1y + X0'Ω1Xb = 0  

L/b  = X'Ω1y + X'Ω1X0b0 = 0 

where the solutions for b and b0 are 
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     bGLS  = (X0'Ω1X)1X0'Ω1y 

b0,GLS = (X'Ω1X0)1X'Ω1y      (1) 

The existence of (X'Ω1X0)1 is guaranteed because X and X0 are full 

column rank matrices. Simple inspection of the solution b0 supports the 

finding that (1) is an unbiased, though not efficient, estimator of 0: 

E(b0) = 0 + (X'Ω1X0)1X'Ω1E(0|X,X0) 

        = 0 

E[(b0  0)(b0  0)'] = (X'Ω1X0)1X'Ω1E(00'|X,X0)Ω1X(X0'Ω1X)1 

    = σ0
2(X'Ω1X0)1X'Ω1Ω0Ω1X(X0'Ω1X)1 

E[(b  )(b0  0)'] = (X0'Ω1X)1X0'Ω1E(0'|X,X0)Ω1X(X0'Ω1X)1 

  = σ0
2σ2 (X0'Ω1X)1X0'Ω1ΨΩ1X(X0'Ω1X)1.   (2) 

The solutions in (1) are called Generalized Least Squares (GLS). 

Alternatively, we get a Least Squares (LS) solution by solving the normal 

equations which emerge after minimizing L = (yX)'(yX00), 

 bLS   = (X0'X)1X0'y 

b0,LS = (X'X0)1X'y.        (3) 

In this case b0 also appears unbiased but inefficient: 

E(b0)   = 0 + (X'X0)1X'E(0|X,X0) 

= 0 

E[(b0  0)(b0  0)'] = (X'X0)1X'E(00'|X,X0)X(X0'X)1 

= σ0
2(X'X0)1(X'Ω0

1X)(X0'X)1 

E[(b  )(b0  0)'] = (X0'X)1X0'E(,0'|X,X0)X(X0'X)1 

    = σ0
2σ2(X0'X)1X0'ΨX(X0'X)1.  (4) 

Note that pre-multiplying the normal equations for bGLS by 

(X'Ω1X0)1X'(X0X0')1X0 and the normal equations for bLS by 

(X'X0)1X'(X0X0')1X0 in (1) and (3), respectively, allows the identities 

      b0,GLS = (X'Ω1X0)1X'Ω1XbGLS 

b0,LS    = (X'X0)1X'XbLS,     (5) 
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provided (X0X0')1 exists. These identities, however, are not required for 

the forthcoming analysis. 

2.2 Another IV estimator? 

At a first sight, (1) and (3) may resemble the well-known instrumental 

variables (IV) estimators. However, this is only apparent because the 

latter require knowledge of a closely-related-to-X0 matrix Z that satisfies 

Z'0 = 0 although the IV approach does not provide a way of finding such 

a matrix. Instead our approach requires only the replacement of the 

distorted values in X0 by any code that satisfies the Grenander 
conditions (see section 4), provided the distorted data appear completely 

at random. The relevance of this issue can be seen using an example. 

Consider the matrix of instruments Z = Ω1X and the transformed model 

Z'y = Z'X00 +  where ~(0, σ0
2Z'Ω0Z). 

Then b0,IV = (Z'X0)1Z'y is an IV estimator equivalent to b0,GLS in (1). 

However, the role of Z as a matrix of instruments is obscure because 

there is no way to check if Z is close enough to X0 and the fulfillment of 

the orthogonality condition zj'0 = 0 without knowing X and Ω, which 

(from an IV perspective) are completely unknown. In our approach X is 

a matrix of true and assigned values completely defined and Ω1 is just 

an arbitrary weighting matrix that may be estimated by standard 

procedures. Accordingly, while through our approach we ensure that b0 

will converge asymptotically to 0, through the IV approach we do not 
know that for certain. 

 

3. CONSTRAINED SOLUTIONS 

We propose here the Lagrangean 

L = (yX)'Ω1(yX00) + '(Tt) + 0'(R0r), 

where T is a linear transformation of R which allows us to express the 

system R0 = r as T = t, and vectors  and 0 are two Lagrange 

multipliers. Then, the first order conditions are,   

L/b0
* = X0'Ω1y + X0'Ω1Xb* + R'0

* = 0 

L/b*  = X'Ω1y + X'Ω1X0b0
* + T'* = 0 

L/*  = Tb*  t = 0 

L/0
* = Rb0

*  r = 0 

with solutions 
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 bGLS
*
  = b  (X0'Ω1X)1R'[T(X0'Ω1X)1R']1(Tb  t) 

b0,GLS
*
 = b0  (X'Ω1X0)1T'[R(X'Ω1X0)1T']1(Rb0  r).    (6) 

These solutions are called Restricted Generalized Least Squares (RGLS). 

Similarly, a Restricted Least Squares (RLS) solution may be obtained by 
minimizing the constrained LS Lagrangean 

L = (yX)'(yX00) + '(Tt) + 0'(R0r), 

and solving the first order conditions, resulting in 

 bLS
*
  = b  (X0'X)1R'[T(X0'X)1R']1(Tb  t) 

b0,LS
*
 = b0  (X'X0)1T'[R(X'X0)1T']1(Rb0  r).   (7) 

Frank (2007, 2008a and 2009) showed that  

b0
* = b0Σ2R'(RΣ2R')1(Rb0r) 

is a general form for RGLS and RLS, where b0 is the matching 
unconstrained estimator and Σ2 is var(b0) as in (2) or (4). Then, by 

equating 

Σ2
GLSR' = (X'Ω1X0)1T' and Σ2

LSR'   = (X'X0)1T' 

we get, respectively,  the restriction matrices 

T = R(X'Ω1X0)1X'Ω1Ω0Ω1Xσ0
2 

T = R(X0'X)1X'Ω0
1Xσ0

2. 

The scalars σ0
2 may be omitted since they cancel out in the expression 

of b0
*. The expectation, variance and covariance of b0

* are 

E(b0
*)  = E(b0|X,X0,y)Σ2R'(RΣ2R')1[RE(b0|X,X0,y)r] 

= 0 

E[(b0
*  0)(b0

*  0)']  = var{[I  Σ2R'(RΣ2R')1R]b0} 

= Σ2  Σ2R'(R Σ2R')1RΣ2 

E[(b*  )(b0
*  0)'] = (I  A)cov(b,b0)(I A0) 

= σ0
2σ2 (I  A)BΨB0'(I  A0)',  (8) 

where A0 is Σ2R'(RΣ2R')1R and B0 is either (X'Ω1X0)1X'Ω1 or (X'X0)1X' 

depending if we are in a GLS or LS context, respectively. Matrices A and 

B are the counterpart for b. 

 

4. ASYMPTOTICS 



        Frank, L./ Cuadernos del CIMBAGE Nº20, 2°Edición (2018) 27-38       33     

 

 

In this section, we derive the sampling distribution of b0 and b0
*. So, if X 

comes from a sample, b0 will converge to 0 in probability (which we write 

b0→p 0) if 

plimn→∞ b0 = 0 + plimn→∞ (S/n)1X'Ω10/n   (by Slutsky’s th.) 

                     = 0 + plimn→∞ (S/n)1 plimn→∞ X'Ω10/n 

                     = 0 

where S = X'Ω1X0. This condition is satisfied if  

(i) plimn→∞S/n = plimn→∞ X0'Ω1X0/n + plimn→∞ U'Ω1X0/n = Q0 + QU,  (9) 

where Q0 and QU are finite and nonsingular matrices, and  

(ii) plimn→∞ X0'Ω10/n + plimn→∞ U'Ω10/n = 0.   (10) 

In (9) the convergence of X0'Ω1X0/n to Q0 is guaranteed by imposing the 

Grenander conditions on X0. In (10) the convergence of X0'Ω10/n to 0 

is also guaranteed by imposing the Grenander conditions and by the 

definition of 0. The convergences of U'Ω1X0/n to QU and U'Ω10/n to 0, 

however, require additional conditions.  

The expression U'Ω1X0/n converges to QU if and only if for any two 

columns of U and X0 (which we shall call u and x0, respectively), plimn→ 

u'Ω1x0 /n = qUij. Nevertheless, each element uij = (1  x=x0) (cij  x0ij), 

whence  

plimn→ uj'Ω1x0j' /n = plimn, m→ [(I   j)(cj  x0j)]'Ω1x0j' /n  

        = plimn, m→ cj'(I   j)Ω1x0j' /n  const. 

         plimm→ cj'Ω1x0j' /m = const.  (11) 

plimn→ uj'Ω10 /n = plimn, m→ [(I   j)(cj  x0j)]'Ω10/n  

       plimm→ cj'Ω10 /m = 0  (12) 

where j is a diagonal matrix of x=x0 and m is the number of distorted 

values in the j-th column of X0.1 Clearly, (11) and (12) are satisfied by 

imposing the Grenander conditions on the code cij. With regard to b0
* we 

write 

  

                                                           
1 Note that in (11) we assumed that m grows at the same rate as n. 
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plimn→b0
*
 = 0  plimn→ (S/n)1T'[R(S/n)1T']1(Rb0  r) 

     = 0  Q1T'[RQ1T']1 RQ1 plimn→ X'Ω10/n 

     = 0,  

where b0
* is either the RGLS solution in (6) or the RLS solution in (7) 

and Q = Q0 + QU.  

 

5. CONCLUSION 

The unconstrained estimators presented in (1) and (3), as well as their 
constrained counterparts in (6) and (7), seem to have been overlooked in 
the econometric literature despite their simplicity (see e.g. Judge et al., 
1985; Greene, 2006; Rao et al. 2008) as alternative estimators for 

distorted datasets. According to the literature, the common practice to 

deal with distorted datasets is to replace X0 in e.g. the GLS solution by 

an estimator X0
+ obtained by some imputation criterion (Little, 1992). 

This approach, however, leads to an inconsistent estimator of 0 
whenever the convergence in probability of G0

+/n→Q is not guaranteed. 

Moreover, if an estimated Ω0 is to be plugged into G0
+ the consistency of 

Ω0
+ cannot be ensured as Ω0

+ depends on the properties of the residuals 

of the feasible LS estimator which in turn depends on X0
+'X0

+. Instead, if 
we introduce X0

+ in our solution it still holds that plimn→∞S+/n = Q, 

provided X remains non-random. The same argument is extendable to 

the constrained counterparts (6) and (7). 

Although we introduced the concept of distorted data as more general 

than just missing data, our development appears to treat distorted data 

as missing. That is because we did not try to exploit the information 
contained in the true values by constructing a code cij after them. For 

example, we could have defined the perfectly valid code cij = 1'x0j/(nm) 

for the even i-s and cij = 1'x0j/(nm) for the odd i-s, if X0 were not a 

sample matrix. If X0 were a sample matrix this code may presumably 

improve the convergence rate of b0 to 0 as n→, but progress in this is 

direction is beyond the scope of the paper.  

Frank (2008b) arrived to (1) minimizing the sums of squares of the 

distorted model L = ', subject to X = X0 + U as shown in the appendix. 

In this paper we show that it is possible to obtain the same estimator 
minimizing the covariance between the true and the distorted models. In 

fact, the latter procedure is preferable to the first because it leads directly 

to b0 rather than to a feasible b0 after discarding an additive linear 
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transformation of the error term 0. The findings (6) and (7) are new, but 

it should be pointed out that they rely heavily on the existence of a 
general form for constrained linear models (see Frank, 2008a) although 

a proof of its uniqueness is (to the best knowledge of the author) still not 

available.  

As a final remark, note that combining previous asymptotic results and 

the Central Limit Theorem (e.g. in Lindberg-Feller’s version) we get easily 

n1/2(b0  0)  →d N(0, σ0
2 Σ2) 

n1/2(b0
*  0) →d N(0, σ0

2 Σ2  σ0
2Σ2R'(R Σ2R')1RΣ2), 

where Σ2 = AΩ0A' and AGLS = S1X'Ω1 or ALS = (X'X0)1X'. Note that the 

matrix 

Δ = σ0
2A(Ω0  X0G0

1X0')A' = σ0
2(AP)In(AP)' 

is symmetric positive semi-definite (Lütkepohl, 1996, pp. 156-157 and 

151-152) as there exists a matrix P such that Ω0  X0G0
1X0' may be 

written as PP'. Then, b0 is an inefficient estimator of 0 as would be 

expected due to the loss of information caused by the distortion of X0. 
However, the properties of b0 and b0

* in the context of small samples 

remain unknown. 
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APPENDIX 

We minimize the Lagrangean  

L = f(|X,y) = (y  X)'Ω1(y  X) + 2g'(XX0U) 

and solve the first order conditions ∂L/∂b = 0 and ∂L/∂g = 0, in order to 

get the well-known GLS solution 

b = [(X0 + U)'Ω1(X0 + U)]1(X0 + U)'Ω1y 

   = (X'Ω1X)1X'Ω1y       (A.1) 

From this solution we shall deduce an expression for b0. Therefore, we 

define the following notation: 

(a) G = X'Ω1X, G0 = X0'Ω0
1X0 and Ĝ0 = X0'Ω1X0 

(b) H = G1X'Ω1, H0 = G0
1X0'Ω0

1 and Ĥ0 = Ĝ0
1X0'Ω1 

where the existence of H, H0 and Ĥ0 is guaranteed because G, G0 and Ĝ0 
are symmetric matrices (Lütkepohl, 1996, pp. 156-157) positive 

semidefinite  (Lütkepohl, 1996, pp. 151-152). Then, adding and 

subtracting Ĥ0 in (A.1) we write 

b = Ĝ0
1X0'Ω1y + (G1X'  Ĝ0

1X0')Ω1y     (A.2) 

However, Ω = Ω0 + (Ω  Ω0) which implies that Ω1 = [Ω0 + (Ω  Ω0)]1. 

Applying the result of (Henderson and Searle, 1981) on the inverse of a 

sum of matrices we get 

Ω1 = Ω0
1  [Ω0(Ω  Ω0)1Ω0 + Ω0]1 

       = Ω0
1  B1, 

in turn meaning that 

Ĝ0
1 = [X0'(Ω0

1  B1)X0] 1 

        = (X0'Ω0
1X0)1 + C 

        = G0
1 + C. 

Now replacing these equalities in (A.2) yields 

b = (G0
1 + C)X0'(Ω0

1  B1)y + (H  Ĥ0) y 

   = b0 + [G0
1X0'B1 + CX0'Ω1 + G1X'Ω1  Ĝ0

1X0'Ω1] y, 

but recalling that C = Ĝ0
1G0

1 and B1= Ω0
1  Ω1 

b = b0 + [G0
1X0'B1 + (C Ĝ0)X0'Ω1 + G1X'Ω1] y 

   = b0 + [G0
1X0'(B1+ Ω1) + G1X'Ω1] y 
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   = b0 + [G1X'Ω1  G0
1X0'Ω0

1] y     (A.3) 

where b0 = G0
1X0'Ω0

1y is the GLS solution for the true model. Note that 

in addition to the initial assumptions, we require that Ω  Ω0 is a 

nonsingular matrix. Next we replace y in (A.3) by the expression of the 

true model, and add and subtract the term (HX0  I)b0 on the right hand 

side of equality. So we obtain 

b = b0 + (HX0  I)0 + (H  H0)0 

   = HX0b0  (HX0  I)(b0  0) + (H  H0)0. 

Pre-multiplying both sides of the expression by (HX0)1, canceling 
identities and rearranging terms yields 

b0 = (X'Ω1X0)1X'Ω1y + δ      (A.4) 

where we assume that (HX0)1 = (X'Ω1X0)1X'Ω1X exists. Expanding the 

term δ and recalling that b0  0 = H00 we see that  

δ = [I  (HX0)1] (b0  0)  (HX0)1(H  H0)0  

   = [H0  (HX0)1H] 0 

or, more explicitly, 

δ = [G0
1X0'Ω0

1  (X'Ω1X0)1X'Ω1] 0 

   =  (X'Ω1X0)1X'Ω10 

if (Ω0
1/2X0)'(Ω0

1/20) = 0. However, δ is not observable, so we propose the 

feasible solution 

b0
* = (X'Ω1X0)1X'Ω1y.  


