UNA APLICACIÓN DE MODELOS MULTIVARIADOS PARA DATOS LONGITUDINALES: EVALUACIÓN DEL COMPORTAMIENTO DE INDICADORES DEL MERCADO LABORAL
Resumen
En investigaciones sociales frecuentemente se realizan mediciones de múltiples variables respuestas a lo largo del tiempo a dos o más grupos de unidades. La modelación conjunta de varias variables respuestas es conveniente en muchas situaciones sobre la modelación de las mismas en forma separada. Los datos longitudinales multivariados surgen cuando un conjunto de diferentes respuestas se mide repetidamente en el tiempo sobre una misma unidad. Resulta de interés para tales datos conocer cómo la evolución de una respuesta está relacionada con la evolución de otra respuesta y/o cómo la asociación entre las distintas respuestas evoluciona con el tiempo. Para modelar tanto la correlación entre las mediciones repetidas de una variable respuesta dada como la correlación entre las mediciones de todas las respuestas en una determinada ocasión, se propusieron diferentes estrategias de modelación conjunta de variables. Una de ellas consiste en ajustar un modelo con una estructura de covariancias especial usando la notación “producto Kronecker”; la otra es modelar introduciendo efectos aleatorios, es decir, usando un modelo mixto. En este trabajo se presenta una aplicación de la metodología para el ajuste de modelos multivariados con el objetivo de explicar la evolución conjunta de las variables tasas de actividad y desocupación, para varios aglomerados de la República Argentina durante el tercer trimestre 2006 y el cuarto trimestre 2008. Palabras clave: datos longitudinales multivariados, modelos mixtos, tasa de desocupación, tasa de actividad. Abstract Measurements of multiple variable responses over time to two or more groups of units are frequently carried out in social researches. In many situations, the joint modeling of several variable responses is more convenient than the modeling of responses separately. Multivariate longitudinal data arise when a set of different responses is measured repeatedly over time on the same unit. It is of interest to such data to know how the evolution of a response is related to the evolution of another response and/or how the association between the different responses evolves over time. Different strategies of joint modeling of variables were proposed to model both the correlation between repeated measurements of a given variable response and the correlation between measurements of all responses on a particular occasion. One of these strategies consists of adjusting a model with a special covariance structure using the "Kronecker product" notation. Another strategy is to model by introducing random effects, i.e. by using a mixed model. This paper presents an application of the methodology for the adjustment of multivariate models, with the purpose of explaining the joint evolution of the activity and unemployment rate variables for various agglomerates of the Argentine Republic during the third quarter of 2006 and the fourth quarter of 2008. Keywords: multivariate longitudinal data, mixed models, unemployment rate, activity rate.Descargas
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) que permite a terceros copiar y redistribuir el material en cualquier medio o formato y adaptar — remezclar, transformar y construir a partir del material bajo la la misma licencia del original. En todos los casos, debe dar crédito de manera adecuada.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.