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ABSTRACT

RESUMEN

SUBGRAPH NETWORK RANDOM EFFECTS ERROR 
COMPONENTS MODELS: SPECIFICATION AND TESTING

This paper develops a subgraph network random effects error components for network data regression models. In particular, it allows 
for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential 
effects of ignoring network effects in the estimation of the variance-covariance matrix. It also proposes consistent estimator of the 
variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte 
Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank 
market in Argentina.

Este trabajo desarrolla modelos de componentes de errores para regresiones con datos en redes. En particular, el modelo permite 
efectos específicos de links y triángulos, que sirven como una primera aproximación para modelar efectos de redes más complejos. 
Se evalúan las consecuencias de ignorar los efectos de redes sobre la estimación de la matriz de varianzas y covarianzas en modelos 
de regresión. Se proponen estimadores consistentes de los componentes de la varianza y contrastes de multiplicadores de Lagrange 
para evaluar el modelo correcto a ser usado. Simulaciones de Monte Carlo muestran una buena performance en muestras finitas. Se 
aplican los contrastes al mercado interbancario Call en Argentina.
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1 Introduction

Statistical inference when data are grouped into clusters is an important is-

sue in empirical work, and failure to control for within-cluster correlation

can lead to misleadingly small standard errors (see, e.g., the discussion in

Cameron and Miller, 2015). This is especially important when using aggre-

gate variables on micro units in which ordinary least-squares (OLS) standard

errors are seriously underestimated. The seminal work of Moulton (1986,

1987, 1990) allows for a quantification of this potential pitfall, a fact that

has been emphasized in chapter 8 of Angrist and Pischke (2009) textbook

among many others (see Montes-Rojas, 2016).

A particular data structure related to cluster effects is that of networks.

Matched data, where the interaction among agents is observed, are one type

of such network data, where the information on who is in direct or indirect

contact with whom matters. This has attracted a considerable attention with

regards to spillover effects in education, production, financial markets, trade

and many others. See Chandrasekhar (2016), de Paula (2017) and Graham

(2019) for recent literature reviews.

Within a given network observations are not independent and the depen-

dence structure is related to the network position of the observation. There

is no obvious pattern to construct clusters or groups in this case. Network

models differ from standard cluster ones in the heterogeneity of the groups

which need to be defined ad-hoc within the network as there are no obvious

way to group observations. The network structure also differs from the spa-

tial case, as in the latter there is a natural embedding into some metric space

(i.e., natural geometry). The most obvious type of intra-network correlation

arises when we consider observations given by vertices or nodes that have a

common edge or link. If we consider a link-specific effect, this would result in

a specific factor that arises for linked nodes and not for others. Nodes that

share a link might be correlated with each other.
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We are mostly concerned with a linear regression model where observa-

tions are the nodes and with the correct estimation of the variance-covariance

structure. Thus we explore error components structure where the compo-

nents depend on local network features of the observations. In particular,

for a given graph we construct the error components model by considering

link- and triangle-specific effects. The main purpose of this exercise is that

the empirical researcher starts from a standard variance-covariance structure

(i.e., independent error components), and then tests sequentially for poten-

tial components’ patterns (e.g., edges, triangles, diamonds, cliques, stars,

etc.). In particular, this paper is concerned with the clustered characteristics

of nodes and links.

There is a substantial theoretical and empirical research addressing why

agents may prefer to have clustered links. Jackson, Barraquer, and Tan

(2012) develop a simple model of favor exchange, in which being part of

a group of three generates a payoff, whereas having a link or two friends

who themselves are unlinked may generate no payoff. Moreover, correlation

in links could allow agents to sustain cooperation that they may otherwise

not be able to as in Bloch, Genicot, and Ray (2008) and Karlan, Mobius,

Rosenblat, and Szeidl (2009). As noted in Chandrasekhar (2016) a simple

extension of standard models to take into account these effects is to impose

a triangle effect. Chandrasekhar and Jackson (2016) study random graphs

based on subgraphs where the network is the union of these subgraphs. As

in this literature, we develop the particular example of triangle effects, as

different from node and link characteristics.

The developed error components model has interesting features.

First, contrary to the standard error components models, network effects

will typically imply heteroskedastiticy. Take for instance the vertex&edge-

only error components model where each vertex will have a vertex specific

random component and an edge specific random component. Vertices that

have one link are different from those that have two or more. The edge
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specific component will in fact generate a higher variance for vertices with

more links.

Second, as with the Moulton factor, the key role is given by the joint

consideration of the intra-network correlation of the error term(s) and the

covariates. More formally, given an intra-network covariance structure of the

error term and one of the covariates, the potential effect of misspecification

in the variance-covariance of the estimators will depend on the sample intra-

network covariance between the covariance factors of the error term and the

covariates.

In most empirical settings, both covariance factors are positively corre-

lated (i.e., a high correlation between two unobservables usually corresponds

to a high correlation between the covariates), and thus this determines that

the OLS estimator variance that do not consider the potential network ef-

fects will underestimate the true variance. In particular, in the special case

of covariates with no intra-network correlation, the standard OLS variance

is correct.

This paper differs from the literature in several ways.

First, many network econometrics related contributions focus on dyadic

data structures where the unit of observation is the pair, i.e., the link, rather

than the node (see, for instance, Krackhardt, 1988; Hoff, Raftery, and Hand-

cock, 2002; Hoff, 2005). However, as noted by Chandrasekhar and Jackson

(2016) that approach is not designed for identifying the incidence of particu-

lar patterns within network relationships. For regression models in which the

node rather than the link is the unit of observation, the proposed subgraph

network application is more useful.

Second, most of the linear regression network models using nodes as the

unit of observations build upon spatial econometric models. The seminal

contribution is Manski (1993), but there is a large literature on developing

identification and estimation of network models with spatial-type structure

(see, e.g., Kelejian and Prucha, 1999; Lee, 2007; Kelejian and Prucha, 2010;



2 NETWORK ERROR COMPONENTS MODEL 5

Lee, Liu, and Lin, 2010). Spatial models have the advantage of estimating few

parameters (i.e., the spatial autoregressive parameter). These models require

a pre-specification of the adjacency matrix and a distance measure within

the network topology, which may be subject to misspecification. Once this

is given there is a fixed relation among the variance-covariance components

that multiply the powers of adjacency matrix. The potential gains from using

a subgraph network error component model rather than a spatial model

would depend on the flexibility of adding additional components without

restrictions on the variance-covriance structure. Alternatively, many network

features can be modeled from imposing additional parameters on the powers

of the adjacency matrix. Spatial econometric models are not specifically

modeled for capturing subgraph structures that may affect the dependence

among observations. We argue that our approach provides a more flexible

model to account for that. Note, however, that the proposed analysis is a

complement to spatial econometric models, and it does not intend to show

it is better than those in a given dimension.

This paper is organized as follows. Section 2 develops the subgraph net-

work random effects error components model. Section 3 presents simple

consistent variance-covariance components estimators. Section 4 constructs

specification tests and Section 5 evaluates the finite sample performance us-

ing Monte Carlo experiments. Section 6 applies the proposed tests to the

interbank market in Argentina. Section 7 concludes.

2 Network error components model

2.1 Network definition and notation

Consider an undirected graph G = (V, L) as a mathematical structure con-

sisting of a set V of vertices (also commonly called nodes) and a set L of

edges (also commonly called links). Unless otherwise specified the graph is
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undirected where elements of L are unordered pairs (i, s) of distinct vertices

(i, s) ∈ V × V . If the graph were directed where the elements of L are

ordered pairs (i, s) ∈ V × V . The number of vertices is N = |V | and the

number of edges is M = |L|. Without loss of generality, we will label the ver-

tices simply with the integers 1, . . . , N , and the edges, 1, . . . ,M . Note that

M ≤ N(N − 1)/2 for undirected graphs (and M ≤ N(N − 1) for directed

ones). There are 2(N
2 ) potential undirected networks.

For our purposes consider a set of triangles in undirected graphs as

Triangles = {(i, s, r) ∈ V 3, i < s < r, (i, s), (s, r), (i, r) ∈ L3}, the num-

ber of triangles is T ≤ N(N − 1)(N − 2)/6. The set of triangles could be

defined differently for directed graphs.

The fundamental connectivity of a graph G may be captured in an N×N
binary adjacency matrix A with entries

ais =

{
1 if vertices {i, s} ∈ L
0 otherwise

,

the edge-incidence matrix B, an N ×M binary matrix with entries

bij =

{
1 if vertex i is incident to edge j

0 otherwise
,

and the triangle incidence matrix C, an N × T binary matrix with entries

cik =

{
1 if vertex i is incident to triad k

0 otherwise
.

For an undirected network A is symmetric and we can define the vertices’

degree {di}Ni=1 which can be obtained by diag(BB>), and vertices’ triangles

{ti}Ni=1 which can be obtained by diag(CC>).

The definitions above correspond to unweighted networks. We could ex-

tend this to weighted networks by defining an N ×N binary matrix w with

entries
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wis =

{
wis if vertices {i, s} ∈ L
0 otherwise

.

The matrices B and C need to be constructed accordingly.

2.2 Subgraph random effects in the undirected graph

model

Consider the following assumption on the probability space.

Assumption 1:

Let G ∈ GN be a space of graphs of size N and x ∈ XN ∈ RKN the domain of

K covariates, σ(GN ,XN) a σ-algebra in the sample space (GN ,XN), and PN
a probability space on the measurable space on (GN ,XN), σ(GN ,XN). Then

[(GN ,XN), σ(GN ,XN),PN ] form a probability space.

Now we consider a standard regression model for observations given by

nodes within the network:

Assumption 2: Consider then the error components regression model for an

unweighted undirected subgraph network structure,

yi = xiβ + εi, (1)

where the i = 1, 2, ..., N observations are connected through a graph G as

defined in Section 2.1.

This paper is concerned with the error structure of the regression model

above:

Assumption 3:

Assume that

εi := E[yi − E(yi | x,G)] = νi +
M∑
j=1

bijµj +
T∑
k=1

cikδk, (2)
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where {bij} and cik are the row vectors of matrices B and C derived from

graph G, and ν, µ and δ are mutually independent random variables that

satisfy: (i) ∀i,j,t E(νi | x,G) = E(µij | x,G) = E(δijt | x,G) = 0, (ii)

∀i,j,t Var(νi | x,G) = σ2
ν , Var(µij | x,G) = σ2

µ, Var(δijt | x,G) = σ2
δ .

Let ν, µ and δ be mutually independent random vectors of size N , M and

T , respectively.

Correct mean specification: ∀i,j,t E(νi | x,G) = E(µij | x,G) = E(δijt |
x,G) = 0.

Variance: ∀i,j,t Var(νi | x,G) = σ2
ν , Var(µij | x,G) = σ2

µ, Var(δijt | x,G) =

σ2
δ .

The model can also be written as

εi = νi +
N∑
i=1

N∑
s>i

aisµ(is) +
N∑
i=1

N∑
s>i

N∑
r>s

aisasrairδ(isr), (3)

where µ(is) and δ(isr) correspond to the common edge and triangle effects,

respectively.

In matrix notation the model above can be written as y = xβ + ε, where

y and ε are N × 1 vectors, x is N ×K matrix, and β is a K× 1 vector. Then

consider

ε = ν +Bµ+ Cδ, (4)

and

Ω := E[εε> | x,G] = E[νν> +Bµµ>B> + Cδδ>C> | x,G] (5)

= σ2
νIN + σ2

µBB
> + σ2

δCC
>,

where ν is a N × 1 random vector, µ is a M × 1 random vector, δ is a T × 1

random vector.

Note that this model allows for the covariates x to be dependent on

the network structure. Thus for instance, vertex-specific features such as
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network centrality (degree, betweenness, clustering, etc.) may be covariates

of the model.

Consider the OLS estimator β̂ = (x>x)−1x>y, and consider the goal of

estimating V ar[β̂ | x,G]. Given the assumptions of the model, then consider

V ar[β̂ | x,G] = (x>x)−1(x>Ωx)(x>x)−1. (6)

Note that Ω acts as a selector and weighting matrix that selects which

row and columns of x should be considered and weights them accordingly.

In the case with no network effects, defined as the vertex-only model,

Ωv = σ2
νIN ,

and thus only the xs that correspond to the same vertices i are considered.

Thus

x>Ωvx = σ2
ν

N∑
i=1

xix
>
i .

The random-effects vertex&edge incidence model would have

Ωve = σ2
νIN + σ2

µBB
>.

Thus

x>Ωvex =
N∑
i=1

(σ2
ν + diσ

2
µ)xix

>
i + 2σ2

µ

N−1∑
i=1

N∑
s>i

aisxix
>
s .

=
N∑
i=1

(σ2
ν + diσ

2
µ)xix

>
i + 2σ2

µ

N−1∑
i=1

N∑
s>i

(
M∑
j=1

bijbsj)xix
>
s .

Two things are important to notice from this variance-covariance. First,

note that the model implies an heteroskedastic structure, where the diago-

nal elements are proportional to the degree di of each vertex. Second, the

off-diagonal elements that have a role are those of vertices that have a com-

mon link, which in this case have a maximum of one. As in the case of
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the standard Moulton factor for one-way random effects error component

models, the variance of the OLS estimators may be under estimated if the

Xs are correlated in the same way as the errors. For this case, note that

if
∑N−1

i=1

∑N
s>i(
∑M

j=1 bijbsj)xix
>
s is positive definite then a regression model

that does not take into account the network structure will underestimate the

true variance of β̂.

The random-effects vertex&triangle incidence model would have

Ωvt = σ2
νIN + σ2

δCC
>.

Therefore, the variance-covariance matrix component is

x>Ωvtx =
N∑
i=1

(σ2
ν + tiσ

2
δ )xix

>
i + 2σ2

δ

N−2∑
i=1

N−1∑
s>i

N∑
r>s=1

airasraisxix
>
s

=
N∑
i=1

(σ2
ν + tiσ

2
δ )xix

>
i + 2σ2

δ

N−1∑
i=1

N∑
s>i

(
T∑
k=1

cikcsk)xix
>
s .

In the same way as the vertex&edge model, this model has an het-

eroskedastic structure that depends on the number of triangles each vertex

belongs to. Moreover the off-diagonal elements are proportional to the num-

ber of triangles each edge belongs to (maximum N − 2). Moreover, we can

have a Moulton factor-type analysis when comparing this model with the iid

or vertex-only model.

Joining both models gives a general model with vertex, edge and triangle

random components.

x>Ωvetx =
N∑
i=1

(σ2
ν + diσ

2
µ + tiσ

2
δ )xix

>
i + 2

N−1∑
i=1

N∑
s>i

[
σ2
µ

M∑
j=1

bijbsj + σ2
δ

T∑
k=1

cikcsk

]
xix
>
s .

The results above can be easily extended to weighted networks where

A is replaced by W , and the B and C matrices are also constructed using

the weighted components. Note that for weighted networks the potential

misspecification problems in estimating the variance-covariance components

are likely to be more severe if wis ∝ xix
′
s.
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2.3 Comparison with spatial models

Consider now a simple spatially autocorrelated models, where the matrix A

is related to distance, and for this case A is a symmetric contiguity matrix.

See Anselin, Bera, Florax, and Yoon (1996) for a discussion and a comparison

of different models.

The simplest model of spatial autocorrelation is captured by a simple

autocorrelation parameter ρ such that

ε = ν + ρAν, ν ∼ iid(0, σ2
ν).

Note that this produces the following structure in the variance-covariance

matrix:

Ωesp1 = σ2
ν(IN + ρ1A)(IN + ρ1A)> = σ2

ν(IN + 2ρ1A+ ρ21A
2).

Although this would capture some of the features developed above, it imposes

restrictions on the parameters, i.e., ρ and ρ21 (see, for instance Kelejian and

Prucha, 1999, 2010).

An alternative specification can be obtained from an spatial autoregres-

sive model where spatial lags of the dependent variable (i.e., A · y) are used

as independent variable, in which case we have

Ωesp2 = σ2
ν(IN − ρ2A)−1(IN − ρ2A)−1>,

where ρ2 is the first order spatial autoregressive parameter. Under some

conditions this can be written in terms of A and its powers.

The added value of the paper can be seen in comparison to this spatial

model. These models require a pre-specification of the adjacency matrix,

which may be subject to misspecification. Once this is given there is a

fixed relation among the variance-covariance components that multiply the

powers of A, i.e., either ρ1 or ρ2. The potential gains from using a subgraph

network error component model rather than a spatial model would depend on
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the flexibility of adding additional components in ε instead of a correlation

structure of a single component ν.

3 ANOVA consistent variance components es-

timators

Here we consider simple consistent estimators of the variance components

using ANOVA-type decompositions.

Consider the following statistics:

S1 =
1

N

N∑
i=1

u2i ,

S2 =
1

M

N−1∑
i=1

N∑
s>i

aisuius,

S3 =
1

T

N−2∑
i=1

N−1∑
s>i

N∑
r>s

aisasrairuius.

S1 contains the usual sum of squared errors. Note that for each vertex

there will be at most N − 1 edges to which it belongs and N − 2 triangles.

Moreover, each edge will be repeated twice for undirected graphs, one for

each vertex, and each triangle will be repeated three times, one for each

vertex. Then,

E[S1 | x,G] = σ2
ν + σ2

µ

2M

N
+ σ2

δ

3T

N
,

where E[S1 | x,G] is the (conditional) variance of a vertex.

S2 contains the cross products of the error terms, which corresponds to

the number of edges M . This corresponds to the existing active links (i.e.,

ais = 1, s > i). For each active link, there could be at most N − 2 triangles

that can be formed from it. Now, each triangle will be repeated three times
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for each link. That is, for S2 if we have an edge, say (i, s), that belongs to a

triangle, say (i, s, r), such that r > s > i, then the triangle effect δ(i,s,r) will

appear in the edges (i, s), (s, r), and (i, s). Thus, each triangle will be found

3 times for every edge. Thus,

E[S2 | x,G] = σ2
µ + σ2

δ

3T

M
,

where E[S2 | x,G] is the (conditional) covariance of two vertices that have a

common edge.

Finally, S3 computes the cross products for active triangles (i.e., ais =

asr = air = 1, r > s > i). Note that for S3 if we have a triangle, say (i, s, r),

then two nodes, say i and s, must share both µ(i,s) and δ(i,s,r). Then,

E[S3 | x,G] = σ2
µ + σ2

δ ,

where E[S3 | x,G] is the (conditional) covariance of two vertices that have

common edge and triangle(s).

In the absence of triangle effects, i.e., σ2
δ = 0, the model simplifies to

σ2
ν = E[S1 | x,G]− E[S2 | x,G]

2M

N
,

σ2
µ = E[S2 | x,G],

such that the non-negativity restrictions are E[S2 | x,G] ≥ 0 and E[S1|x,G]
E[S2|x,G]

≥
2M
N

, such that the ratio of the variance of a vertex to the covariance of

two random vertices needs to be bigger than the average number of edges

per vertex. First, take for instance a cycle graph, a 2-regular graph with

all vertices of degree 2 such that M = N . For this case the variance of the

vertices need to be at least twice the covariance. Second, consider a complete

graph with M = N(N−1)/2. In this case, the ratio of variance to covariance

needs to grow faster than the number of vertices.

In the absence of edge effects, σ2
µ = 0, the model simplifies to
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σ2
ν = E[S1 | x,G]− E[S3 | x,G]

3T

N
,

σ2
δ = E[S3 | x,G],

such that the non-negativity restrictions are E[S3 | x,G] ≥ 0 and E[S1|x,G]
E[S3|x,G]

≥
3T
N

, such that the ratio of the variance of a vertex to the covariance of two

random vertices needs to be bigger than the average number of triangles per

vertex.

For the edge and triangle effects model, solving for (σ2
ν , σ

2
µ, σ

2
δ ) gets

σ2
ν = E[S1 −

E[S2 | x,G]− E[S3 | x,G]3T
M

1− 3T
M

2M

N
− E[S3]− E[S2]

1− 3T
M

3T

N
,

σ2
µ =

E[S2 | x,G]− E[S3 | x,G]3T
M

1− 3T
M

,

σ2
δ =

E[S3 | x,G]− E[S2 | x,G]

1− 3T
M

.

For this case the non-negativity restrictions imply: (i) E[S3|x,G]
E[S2|x,G]

≥ 1, (ii)
E[S2|x,G]
E[S3|x,G]

≥ 3T
M

, (iii) E[S1|x,G]
E[S2|x,G]

≥ 2M
N

, and (iv) E[S1]
E[S3]

≥ 3T
MN

. Restriction (i)

implies that the covariance among vertices that belong to a triangle must

be larger than the covariance of vertices that share a link. Restriction (ii)

states that the ratio E[S3|x,G]
E[S2|x,G]

cannot exceed the average number of triangles

per edge. Restriction (iii) correspond to the number average number of links

per vertex. Restriction (iv) is a combination of the above with no clear

interpretation.

The consistent estimators are then constructed by defining Ŝ1, Ŝ2, and

Ŝ3, where the OLS residuals ε̂ are used, and the non-negativity constraints

are imposed.
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4 Specification tests for undirected unweighted

graphs

The log likelihood function for this problem is given by

L(β, θ) ∝ −1

2
ln |Ω| − 1

2
ε>Ω−1ε,

with θ = (σ2
ν , σ

2
µ, σ

2
δ ), ε = y − xβ, and Ω is given by equation (5). In this

model we have that the Fisher information matrix is block diagonal in terms

of β and θ. This feature also applies to non-Gaussian error components,

where in fact OLS estimators for β are consistent. In turn, this simplifies the

subsequent algebra where we only consider θ for constructing our LM tests.

Let θ ∈ Θ ⊆ Rp, where p is the dimension of θ. Using the formulas in

Harville (1977, p.236) the score functions can be expressed as

sr(θ) = ∂L/∂θr = −1

2
tr(Ω−1∂Ω/∂θr) +

1

2
{ε>Ω−1(∂Ω/∂θr)Ω

−1ε},

for a parameter θr in θ, 1 ≤ r ≤ p. The information matrix J can be

obtained for for 1 ≤ r, k ≤ p. as

∂2L/∂θr∂θk =
1

2
tr

(
Ω−1

{
∂2Ω

∂θr∂θk
− ∂Ω

∂θr
Ω−1

∂Ω

∂θk

})
+

1

2
ε>Ω−1

(
∂Ω

∂θr∂θk
− 2

∂Ω

∂θr
Ω−1

∂Ω

∂θr

)
Ω−1ε,

and

Jrk(θ) ≡ −E(∂2L/∂θr∂θk) =
1

2
tr

(
Ω−1

∂Ω

∂θr
Ω−1

∂Ω

∂θk

)
.

Note that
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∂Ω/∂σ2
ν = IN , (7)

∂Ω/∂σ2
µ = BB>, (8)

∂Ω/∂σ2
δ = CC>. (9)

In order to construct LM tests, first note that the block diagonality be-

tween β and θ allow us to focus on the scores corresponding to θ only. Second,

consistent estimators of θ under the null can be obtained using an ANOVA-

type analysis as in Section 3. Hence our tests will be based on Neyman’s

C(α) principle, which produces tests that are asymptotically equivalent to

likelihood based LM tests under
√
N -consistent non-maximum likelihood es-

timation of the nuisance parameters. See Bera and Bilias (2001) for a dis-

cussion.

Consider a partition of θ = (θ>1 , θ
>
2 )>, where θ2 contains the parameters

under the corresponding null hypothesis H2
0 : θ2 = 0, and θ1 the nuisance

parameters that need to be estimated. In our particular case, θ will be

partitioned into either θ1 = σ2
ν , θ2 = σ2

µ when we want to test for the presence

of edge network effects assuming σ2
δ = 0, θ1 = σ2

ν , θ2 = σ2
δ when we want to

test for the presence of edge and triangle network effects assuming σ2
µ = 0,

θ1 = σ2
ν , θ2 = (σ2

µ, σ
2
δ ) when we want to test for the presence jointly of edge

and triangle network effects, θ1 = (σ2
ν , σ

2
µ), θ2 = σ2

δ when we want to test for

the presence pf triangle effects assuming edge effects or θ1 = (σ2
ν , σ

2
δ ), θ2 = σ2

µ

when we want to test for the presence pf triangle effects assuming edge effects.

Correspondingly, the score will be partitioned as s(θ) = (s1(θ)
>, s2(θ)

>)>,

and the information matrix as J (θ) =

(
J11(θ) J12(θ)

J21(θ) J22(θ)

)
.

Conditional LM statistics for H2
0 under maximum likelihood estimation

are defined as

LM2(θ) = s2(θ)
>{J22(θ)− J21(θ)J −111 (θ)J12(θ)}−1s2(θ).
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Neyman’s C(α) adjusted scores are defined as

s2·1(θ) ≡ s2(θ)− J21(θ)J −111 (θ)J12(θ)s1(θ).

Then, the Neyman’s C(α) LM statistic is

LM2·1(θ) = s2·1(θ)
>{J22(θ)− J21(θ)J −111 (θ)J12(θ)}−1s2·1(θ).

A well known result is that LM2·1(θ̂)
d→ χ2

dim(θ2)
, where θ̂ is a

√
N -consistent

estimator under the corresponding null hypothesis. Note that when we esti-

mate the parameters under the joint null σ2
µ = σ2

δ = 0, the ML estimators of

β and σ2
ν coincide with the least-squares estimators.

Consider now Bera and Yoon (1993) locally size-robust type statistics

(BY test hereafter). For this, consider a new partition of θ = (θ1, θ2, θ3)
′ =

(θ1, θ23)
′ where we want to test for the null hypothesis H2

0 , we consider θ1 as

nuisance parameters to be estimated, but the validity of the test is affected by

the validity of H3
0 : θ3 = 0. Global valid tests for H2

0 would require consistent

estimators of θ3 as in the construction of the conditional LM statistics above.

In practice, however, estimators of θ3 may be cumbersome or it might suffer

identification conditions under the null. Thus, Bera and Yoon (1993) has

been successfully implemented to test one particular null without estimating

the other nuisance parameter θ3. This procedure is valid under
√
N -local

deviations ofH3
0 , but different empirical studies confirmed its validity for non-

local deviations too. In our particular case, the parameter will be partitioned

as θ1 = σ2
ν , θ2 = σ2

µ, θ3 = σ2
δ . This procedure thus allows us to test for triangle

effects but without estimating edge effects variance component, even when

we are estimating under the joint null hypothesis H2
0&H3

0 : σ2
µ = σ2

δ = 0,

which is just least-squares estimation. The statistic is constructed as in Bera,

Montes-Rojas, and Sosa-Escudero (2010, 2017) for non-maximum likelihood

estimation as
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LM2(3)·1(θ) = s2(3)·1(θ)
′[J2(3)·1(θ)]

−1s2(3)·1(θ),

where

s2(3)·1(θ) = s2·1(θ)− J23·1(θ)J −133·1(θ)s3·1(θ),

J2(3)·1(θ) = J22·1(θ)− J23·1(θ)J −133·1(θ)J32·1(θ),

J22·1(θ) = J22(θ)− J21(θ)J −111 (θ)J12(θ),

J33·1(θ) = J33(θ)− J31(θ)J −111 (θ)J13(θ),

J23·1(θ) = J23(θ)− J23,1(θ)J −111 (θ)J1,23(θ).

Then LM2(3)·1(θ̂)
d→ χ2

dim(θ2)
for θ̂ being a consistent estimator under the

joint null hypothesis H2
0&H3

0 : σ2
µ = σ2

δ = 0 and for θ3 = o(1/
√
N).

In sum, the LM tests considered are:

• LMµ: LM test for H0 : σ2
µ = 0 when σ2

ν is estimated as mean squared

error (MSE) after OLS estimation and σ2
δ = 0 is assumed.

• LMδ: LM test for H0 : σ2
δ = 0 when σ2

ν is estimated as MSE after OLS

estimation and σ2
µ = 0 is assumed.

• LMµ,δ: LM test for H0 : σ2
µ = σ2

δ = 0 when σ2
ν is estimated as MSE

after OLS estimation.

• LMµ(δ): BY test for H0 : σ2
µ = 0 when σ2

ν is estimated as MSE after

OLS estimation and σ2
δ = 0 is allowed to have local deviations.

• LMδ(µ): BY test for H0 : σ2
δ = 0 when σ2

ν is estimated as MSE after

OLS estimation and σ2
µ = 0 is allowed to have local deviations.

• LMδ−µ: LM test for H0 : σ2
δ = 0 when (σ2

ν , σ
2
µ) is estimated as in

Section 3 after OLS estimation.
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5 Monte Carlo experiments

This section explores the small sample performance of the proposed tests

through a Monte Carlo experiment. We will consider the following simple

regression model:

yi = xiβ + εi,

εi = νi +
N∑
i=1

N∑
s>i

aisµ(is) +
N∑
i=1

N∑
s>i

N∑
r>s

aisasrairδ(isr),

i = 1, 2, ..., N,

whereA = {air} is an adjacent contiguity matrix. We assume xi ∼ iid N(0, 1),

β = 1, νi ∼ iid N(0, 10), µ(is) ∼ iid N(0, σ2
µ) and δ(isr) ∼ iid N(0, σ2

δ ).

We consider N ∈ {100, 225, 400} and simulate two types of networks.

First, we consider an Erdös-Rényi random graph where links are randomly

generated with a given probability pN , i.e., Prob(air = 1) = pN , i, r =

1, . . . , N, i 6= r. For the Erdös-Rényi graphs we have on average a constant

proportion of vertices and edges, N/M , using p100 = 0.05, p225 = 0.05 ×
100/225, p400 = 0.05 × 100/400. In this case, the number of triangles per

node is also constant on average. Second, a queen-type spatial structure

where edges are generated according to queen contiguity, i.e., for a squared

board with number of rows and columns n =
√
N , for i = 1, . . . , N , air = 1

if r ∈ {i− 1, i+ 1, i− n− 1, i− n, i− n+ 1, i+ n− 1, i+ n, i+ n+ 1} with

1 ≤ r ≤ N , and air = 0 otherwise. Note that the considered spatial-type

model has a similar number of triangles and edges for each node, i.e., 8 edges

and triangles for a node that is not on the border of the board.

First, we consider the empirical size results where we impose the absence

of both edge and triangle random effects, σ2
µ = σ2

δ = 0 in Table 7. In all

cases, marginal, joint and robust tests have the appropriate size, for all levels

of significance.
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Second, we consider the empirical power and size-robustness for (σ2
µ, σ

2
δ ) ∈

{0, 1, . . . , 10}2 in figures 1 and 4. In each case the (a) figure report the

rejection rates as we increase the value of σ2
µ, and the (b) the rejection rates

for different values of σ2
µ.

Figures 1 and 2 report the tests for detecting edge heterogeneity, that is,

σ2
µ > 0. Note that the marginal tests LMµ has the largest power performance

for changes in σ2
µ (see top figures (a)), followed by the joint tests LMµδ.

However, the marginal test also rejects in the direction of σ2
δ > 0, as the

bottom (b) figures show, that is, it is not robust to the presence of triangle

effects. The BY tests are constructed to be able to detect departures from

σ2
µ = 0, while being robust to the presence of σ2

δ > 0, without estimating

σ2
δ . The BY robust test have good power performance in figures 1-(a), in

fact, close to the joint test, but it has low power in the Queen spatial more

complex network model, as shown in figure 2-(a). Nevertheless, the BY test

is robust to deviations in σ2
δ > 0, as seen in figures 1-(b) and 2-(b).

Tests for triangle effects have a similar performance to those of edge

effects. As in the previous paragraph, the tests have the expected rejection

rates in the direction of σ2
δ > 0, and the BY robust test have correct size

for σµ > 0. Note that the conditional test LMδ−µ estimates σ2
µ, and as such

it should be robust to misspecification in edge effects. For this case the BY

robust tests outperforms it in terms of size and power in the Erdös-Rényi

random graph model, and it is very close to the conditional tests in the

Queen spatial structure.

6 Empirical application

Network analysis of the degree of interconnectedness in the financial system

can inform policymakers on optimal bank resolutions mechanisms and how

regulation can help to reduce instability. Empirical networks have been used

for stress test exercises (see Upper, 2011, for a comprehensive review). Net-
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work centrality measures, developed to assess centrality in other contexts and

adapted to the context of financial networks, can guide national authorities

in their assessment of the systemic importance of financial and non-financial

institutions. In the financial economic literature network analysis has mostly

been applied to payment systems, interbank lending markets, and more re-

cently extended to capture the mutual exposure of financial institutions to

other asset classes, including derivatives contracts, in a multilayer networks

framework (Langfield, Liu, and Ota, 2014; Bargigli, di Iasio, Infante, Lillo,

and Pierobon, 2015; Molina-Borboa, Martinez-Jaramillo, Lopez-Gallo, and

van der Leij, 2015; Poledna, Molina-Borboa, Mart́ınez-Jaramillo, van der

Leij, and Thurner, 2015).

Network positioning could affect banks’ interest rates by different mech-

anisms. First, in line with Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015),

dense interconnections serve as a mechanism for the propagation of shocks,

leading to a more fragile financial system. As such, banks that are more con-

nected may be perceived by the market as fragile. The same banks can be

perceived as ‘too-interconnected-to-fail’ such that rather than fragile, those

banks are perceived as more likely to be bailout (see for instance Battiston,

Puliga, Kaushik, Tasca, and Caldarelli, 2012). This is similar to the too-

big-to-fail effect observed in other interbank markets. Second, as argued by

Booth, Gurun, and Zhang (2014), financial institutions with more extensive

and strategic financial networks, can more efficiently acquire and process in-

formation due to their better access to order flows (see, e.g., Temizsoy, Iori,

and Montes-Rojas, 2015). Third, banks with higher centrality within the

network have better access to liquidity and are able to charge larger interme-

diation spreads. Previous empirical evidence (Angelini, Nobili, and Picillo,

2011; Bech, Chapman, and Garratt, 2010; Temizsoy, Iori, and Montes-Rojas,

2017) suggests that being systemically more important, in term of size or

connectedness, can explain part of the cross-sectional variation in banks’

borrowing costs before and during the global financial crisis.
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The centrality indicators used in the empirical analysis are constructed

from measures of distance of a bank from the other banks in the network,

where distance is expressed in terms of paths of length one, i.e. the number

of incoming or outgoing links. Below we consider two basic measures of

centrality. A local measure given by the total degree and a global measure

given by eigenvalue centrality.

We apply this analysis to the interbank overnight Call market in Ar-

gentina. In this market, banks talk to each other to lend or borrow most

of the needed funds to satisfy Central Bank regulation requirements at the

end of the day. While the participating banking market is small (aprox. 50

banks), Argentina is known for recurrent financial collapses, partial and full

defaults on different contracts, all of which affects the financial sector.

We use daily data for the period 1st January 2015 to 31st December 2018.

While the Call market has contracts from 1 up to 7 days long, we keep the

sample of transactions on 1 to 4 days only, thus having a sample of overnight

and weekends only. Networks are constructed on a monthly basis to capture

the rich strategic relationships that can be formed. Thus we consider 48

cross-section network structures, corresponding to one for each month.

Consider a network Gt of Nt banks, where t indexes time (i.e. months).

The dependent variable of interest is πit that is the net profit obtained in a

given month from all lending and borrowing transactions, and defined as

πit =
Ht∑
h=1

Nt∑
j=1,j 6=i

(Lij,hrij,h −Bji,hrji,h) ,

where h = 1, 2, ..., Ht are the days within month t, Nt corresponds to the

banks that participate in the Call market during month t, Lij,h is the total

amount i lent to j on day h at rate rij,h, Bij,h is the total amount i borrow

from j on day h at rate rji,h.

Following Temizsoy, Iori, and Montes-Rojas (2015, 2017) we consider a

regression model of the form
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πit = β0 + β1Vit + β2Liqit + β3Degreeit + β3Eigenit + εit, (10)

for each month t, and for all banks i that participate in that month t. Vit

is the log of the total volume of lending and borrowing of bank i during

month t. Liqit is a liquidity index defined as in Afonso and Lagos (2015),
Li,t+Bi,t−|Li,t−Bi,t|

Li,t+Bi,t
, where Li,t and Bi,t are the total amount lent and borrowed,

respectively, by bank i during month t. Degreei,t is the total degree (both

in and out) and Eigenit is the undirected eigenvalue centrality of bank i in

the network of month t.

We consider different regression models one for each month from a total

of 48 months (4 years). In each case we evaluate the proposed tests, LMµ,δ,

LMµ, LMδ, LMµ(δ) and LMδ(µ), and we compare them with Anselin, Bera,

Florax, and Yoon (1996) canonical tests for spatial dependence. In particular,

one for spatial error autocorrelation, and one for spatial lag autocorrelation

of the dependent variable.

Several features of the exercise can be highlighted.

First, the proposed subgraph tests are different from test for spatial

dependence. In order to show this we compute the joint test results for

edge&triangle effects, LMµ,δ, and those of Anselin, Bera, Florax, and Yoon

(1996) for spatial error and spatial lag specifications. Figure 5 shows the

p-values (in log-scale) of the tests for each month. The analysis reveals that

in most cases, when LMµ,δ rejects (i.e. when the tests detect the presence

of subgraph network random effects, of any type), spatial tests do not; and

when spatial tests reject, only a few tests reject. This indicates that our

proposed subgraph network structure is different from what would be cap-

tured by an model of spatial autocorrelation (in the error structure or lagged

dependent variable). The same pattern appears if we consider Anselin, Bera,

Florax, and Yoon (1996) robust LM tests1 also compared with the results of

1These correspond to Bera and Yoon (1993) type LM tests were each type of spatial

autocorrelation is made robust to the presence of the other type.
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LMµ,δ (see Figure Figure 6).

Second, there is heterogeneity across months in terms of the presence of

edge, triangle, and edge&triangle effects. Figure 7 plots the test results for

LMµ (marginal LM test for edge effects) and LMδ (marginal LM test for

triangle effects). The figure reveals that there are more cases of only edge

effects, while less so with triangle effects detected. 9 cases out of 48 show

that both effects are present at 10% significance level and 6 out of 48 at 5%

significance level. When we explore this further using the robust LM tests in

Figure 8, LMµ(δ) for edge effects controlling for triangle effects, and LMδ(µ)

for triangle effects controlling for edge effects, only 6 cases out of 48 have

both effects at 10% significance level and 3 out of 48 at the 5% significance

level.

7 Conclusion

This paper develops a simple model of subgraph network random effects that

can be used to estimate the variance-covariance matrix in a linear OLS set up

with network data. It focuses on evaluating the appropriate level of effects,

using the example of links’ and triangles’ effects as random components, and

constructung s battery of specification tests.

Monte Carlo evidence shows that the tests correctly identify the type of

network structure. These varies depending on the network structure.

Finally, an empirical application to the interbank market in Argentina

reveals differences when compared with the two canonical types of spatial

autocorrelation in Anselin, Bera, Florax, and Yoon (1996). That is, the

proposed subgraph network error component captures different features of the

data than those of spatial models. The application also shows heterogeneity

across periods.
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Table 1: Empirical size
N LMµ LMδ LMµ,δ LMµ(δ) LMδ(µ) LMδ−µ

Erdös-Rényi random graph

Size 1%

100 0.009 0.016 0.0145 0.009 0.0165 0.0115

225 0.012 0.0115 0.015 0.013 0.012 0.009

400 0.013 0.012 0.0085 0.0095 0.0075 0.007

Size 5%

100 0.043 0.05 0.0465 0.042 0.052 0.041

225 0.052 0.0485 0.0495 0.052 0.0495 0.041

400 0.047 0.0475 0.049 0.046 0.046 0.0435

Size 10%

100 0.082 0.0885 0.0855 0.089 0.092 0.0765

225 0.1045 0.092 0.102 0.098 0.0995 0.0875

400 0.089 0.087 0.093 0.0965 0.099 0.0915

Spatial queen structure

Size 1%

100 0.0115 0.0105 0.0105 0.01 0.011 0.0115

225 0.0075 0.0065 0.012 0.0145 0.0135 0.014

400 0.0085 0.0085 0.0095 0.012 0.011 0.011

Size 5%

100 0.0475 0.0515 0.047 0.048 0.044 0.046

225 0.045 0.039 0.0565 0.0595 0.052 0.0525

400 0.046 0.0465 0.049 0.0535 0.049 0.0505

Size 10%

100 0.0965 0.0975 0.0955 0.094 0.09 0.097

225 0.0965 0.09 0.1 0.1085 0.1115 0.1125

400 0.0935 0.0965 0.098 0.096 0.0995 0.1015

Notes: Monte carlo experiments based on 2000 replications.
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Figure 1: LM tests for edge effects, σ2
µ = 0, Erdös-Rényi random graph
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Notes: Monte carlo experiments based on 2000 replications. Solid line:

LMµ. Dashed line: LMµδ. Dotted line: LMµ(δ).
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Figure 2: LM tests for edge effects, σ2
µ = 0, Queen spatial structure
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Notes: Monte carlo experiments based on 2000 replications. Solid line:

LMµ. Dashed line: LMµδ. Dotted line: LMµ(δ).
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Figure 3: LM tests for triangle effects, σ2
δ = 0, Erdös-Rényi random graph
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Notes: Monte carlo experiments based on 2000 replications. Solid line:

LMδ. Dashed line: LMµδ. Dotted line: LMδ(µ). Dash-dot line: LMδ−µ.



REFERENCES 34

Figure 4: LM tests for triangle effcts, σ2
δ = 0, Queen spatial structure
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Notes: Monte carlo experiments based on 2000 replications. Solid line:

LMδ. Dashed line: LMµδ. Dotted line: LMδ(µ). Dash-dot line: LMδ−µ.
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Figure 5: Subgraph joint tests for edge and triangle effects and spatial LM

test

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−12 −10 −8 −6 −4 −2 0

−
7

−
6

−
5

−
4

−
3

−
2

−
1

0

LM_mudelta

S
pa

tia
l

Note: P-values in log-scale. Dashed line is the 10% critical value and dotted

line to the 5% critical values. Horizontal axis corresponds to joint test for

edge and triangle effects (LMµ,δ). Vertical axis corresponds to Anselin,

Bera, Florax, and Yoon (1996) LM tests for spatial error (circles) and

spatial lag (triangles).
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Figure 6: Subgraph joint tests for edge and triangle effects and robust spatial

LM test
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Note: P-values in log-scale. Dashed line is the 10% critical value and dotted

line to the 5% critical values. Horizontal axis corresponds to joint test for

edge and triangle effects (LMµ,δ). Vertical axis corresponds to Anselin,

Bera, Florax, and Yoon (1996) robust LM tests for spatial error (circles)

and spatial lag (triangles).
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Figure 7: Subgraph tests for edge and triangle effects
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Note: P-values in log-scale. Dashed line is the 10% critical value and dotted

line to the 5% critical values. Horizontal axis corresponds to tests for edge

effects (LMµ). Vertical axis corresponds to tests for triangle effects (LMδ).
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Figure 8: Robust subgraph tests for edge and triangle effects
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Note: P-values in log-scale. Dashed line is the 10% critical value and dotted

line to the 5% critical values. Horizontal axis corresponds to tests for edge

effects robust to triangle effects (LMµ(δ)). Vertical axis corresponds to tests

for triangle effects robust to edge effects (LMδ(µ)).


	DT 44_Montes Rojas_CARATULA
	indice_DT 44_vf
	texto_DT 44_vf



