Experimentos de selección de cartera:
una comparación entre preferencias por cuantiles y utilidad esperada
Resumen
Este trabajo lleva a cabo un experimento de laboratorio para evaluar las decisiones óptimas de elección de cartera bajo preferencias por cuantiles y las compara con las predicciones de modelos basados en funciones de utilidad media-varianza. Estimamos los coeficientes de aversión al riesgo en base a las carteras empíricas, y luego evaluamos la predicción de cada teoría. El experimento se lleva a cabo permitiendo que los individuos elijan entre dos activos riesgosos, aunque también uno de ellos puede ser sin riesgo. Los resultados confirman ambas teorías en distintos casos. La agregación de las elecciones por individuo favorecen la utilidad media-varianza; la agregación por experimento la teoría de cuantiles. La elección está mejor representada por cuantiles cuando la comparación de los pagos no es compleja.
Citas
Ahn, D., S. Choi, D. Gale, and S. Kariv (2014): Estimating Ambiguity Aversion in aPortfolio Choice Experiment," Quantitative Economics, 5, 195-223.
Amemiya, T. (1976): "The Maximum Likelihood, the Minimum Chi-Square and the Nonlinear Weighted Least-Squares Estimator in the General Qualitative Response Model," Journal of the American Statistical Association, 71, 347-351.
Amemiya, T. (1978): "The Estimation of Simultaneous Equation Generalized Probit Model," Econometrica, 46, 1193-1205.
Andreoni, J. and C. Sprenger (2012): Estimating Time Preferences from Convex Budgets,"American Economic Review, 102, 3333-56.
Baltussen, G. and G. T. Post (2011): Irrational diversi cation: An examination of individual portfolio choice," Journal of Financial and Quantitative Analysis, 1463-1491.
Bell, D. E. (1982): Regret in Decision Making Under Uncertainty," Operations Research,30, 961-981.
Berkson, J. (1944): Application of the Logistic Function to Bio-Assay," Journal of the American Statistical Association, 39, 357-365.
Bossaerts, P., C. Plott, and W. R. Zame (2007): Prices and Portfolio Choices in Financial Markets: Theory, Econometrics, Experiments," Econometrica, 75, 993-1038.
Brandtner, M. (2013): Conditional Value-at-Risk, Spectral Risk Measures and (Non-) Diversication in Portfolio Selection Problems{A Comparison with Mean{Variance Analysis,"Journal of Banking & Finance, 37, 5526{5537.
Campbell, J. Y. (2017): Financial Decisions and Markets: A Course in Asset Pricing, Princeton University Press.
Chambers, C. P. (2009): An Axiomatization of Quantiles on the Domain of Distribution Functions," Mathematical Finance, 19, 335-342.
Charness, G. and U. Gneezy (2010): Portfolio Choice and Risk Attitudes: An Experiment,"Economic Inquiry, 48, 133-146.
Cochrane, J. H. (2005): Asset Pricing, Princeton, NJ: Princeton University Press.
de Castro, L. and A. F. Galvao (2019): "Dynamic Quantile Models of Rational Behavior," Econometrica, 87, 1893-1939.
de Castro, L. and A. F. Galvao (2020): "Static and Dynamic Quantile Preferences," Economic Theory, forthcoming.
de Castro, L., A. F. Galvao, G. Montes-Rojas, and J. Olmo (2021a): "Portfolio Selection in Quantile Decision Models," Annals of Finance, forthcoming.
de Castro, L. I., A. F. Galvao, C. Noussair, and L. Qiao (2021b): "Do People Maximize Quantiles?" Games and Economic Behavior, forthcoming.
Diebold, F. X. and R. S. Mariano (1995): "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, 13, 253-263.
Ferguson, T. S. (1958): A Model of Generating Best Asymptotically Normal Estimates with Application to the Estimation of Bacterial Densities," Annals of Mathematical Statistics, 29, 1046-1062.
Gardner, J. (2019): Allocating in the Presence of Dominance: A Mean-Variance Portfolio Choice Economic Experiment," Gettysburg Economic Review, 11, 4.
Garlappi, L., R. Uppal, and T. Wang (2007): "Portfolio selection with parameter and model uncertainty: A multi-prior approach," The Review of Financial Studies, 20, 41-81.
Gilboa, I. and D. Schmeidler (1989): Maxmin Expected Utility with a Non-unique Prior,"Journal of Mathematical Economics, 18, 141-153.
Giovannetti, B. C. (2013): "Asset Pricing Under Quantile Utility Maximization," Review of Financial Economics, 22, 169-179.
Gubaydullina, Z. and M. Spiwoks (2009): "Portfolio diversi cation: an experimental study," Tech. rep., Diskussionsbeitrage.
Kahneman, D. and A. Tversky (1979): "Prospect Theory: An Analysis of Decision Under Risk," Econometrica, 47, 263-292.
Koenker, R., J. A. F. Machado, C. L. Skeels, and A. H. Welsh (1994): "Momentary Lapses: Moment Expansions and the Robustness of Minimum Distance Estimation," Econometric Theory, 10, 172-197.
Lee, L. F. (1992): Amemiya's generalized least squares and tests of overidenti cation insimultaneous equation models with qualitative or limited dependent variables," Econometric Reviews, 11, 319-328.
Lee, L. F. (2010): Pooling estimates with di erent rates of convergence: a minimum 2 approach with emphasis on a social interactions model," Econometric Theory, 26, 260299.
Lehmann, E. L. and G. Casella (1998): Theory of Point Estimation, New York, New York: 2nd ed. Springer-Verlag.
Malinvaud, E. (1970): Statistical Methods of Econometrics, North Halland.
Manski, C. (1988): Ordinal Utility Models of Decision Making under Uncertainty," Theoryand Decision, 25, 79-104.
Mendelson, H. (1987): Quantile-Preserving Spread," Journal of Economic Theory, 42, 334-351.
Mitton, T. and K. Vorkink (2007): Equilibrium underdiversi cation and the preference for skewness," The Review of Financial Studies, 20, 1255-1288.
Moon, H. R. and F. Schorfheide (2002): "Minimum distance estimation of nonstationary time series models," Econometric Theory, 18, 1385-1407.
Nagaraj, N. and W. Fuller (1991): Estimation of the parameters of linear time series models subject to nonlinear restrictions," Annals of Statistics, 19, 1143-1154.
Newey, W. K. and D. L. McFadden (1994): "Large Sample Estimation and Hypothesis Testing," in Handbook of Econometrics, Vol. 4, ed. by R. F. Engle and D. L. McFadden, North Holland, Elsevier, Amsterdam.
Neyman, J. (1949): "Contribution to the theory of 2 test," in Proceedings of the First Berkeley Symposium on Mathematical Statistics and Probability, ed. by J. Neyman, University of California Press.
Payne, J. W., J. R. Bettman, and E. J. Johnson (1992): Behavioral decision research: A constructive processing perspective," Annual Review of Psychology, 43, 87-131.
Quiggin, J. (1982): A Theory of Anticipated Utility," Journal of Economic Behavior & Organization, 3, 323-343.
Rabin, M. (2000): "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, 68, 1281-1292.
Rostek, M. (2010): Quantile Maximization in Decision Theory," Review of Economic Studies, 77, 339{371.
Rothenberg, T. J. (1973): E cient Estimation with A Priori Information, Yale University Press.
Sargent, T. J. (1987): Macroeconomic Theory, 2nd edition, Orlando, Florida, Academic Press.
Simon, H. A. (1979): Rational decision making in business organizations," American Economic Review, 69, 493-513.
Taylor, W. F. (1953): Distance functions and regular best asymptotically normal estimates," Annals of Mathematical Statistics, 24, 85-92.
Tobin, J. (1958): Liquidity Preference as Behavior Towards Risk," Review of Economic Studies, 67, 65-86.
Tversky, A. and D. Kahneman (1981): The framing of decisions and the psychology of choice," Science, 211, 453-458.
Tversky, A. and D. Kahneman (1992): Advances in Prospect Theory: Cumulative Representation of Uncertainty,"Journal of Risk and Uncertainty, 5, 297-323.